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DAWSON-MARCH MODEL FOR THE PAIR 
FUNCTION OF A TWO-DIMENSIONAL ELECTRON 

LIQUID 

ANDREAS SCHINNER and HELGA M. Bt)HM* 

Johannes Kepler Universitat Linz, A-4040 Linz, Austria 

(Received 14 January 1991) 

Based on the functional representation for the pair function developed by Dawson and March the ground 
state correlations of a two-dimensional electron gas are investigated. The method appears to produce 
reliable results for high and intermediate densities. Although the approach contains a linearization step 
using first order Born’s approximation, the resulting zero-distance-correlations remain positive. 

KEY WORDS: Jellium, pair correlations, effective potential, Kimball relation. 

1 INTRODUCTION 

The two-dimensional (2D) electron gas has been found a fruitful model for the 
description of electrons in MOS inversion layers as well as semi-conductor quantum 
wells and heterojunctions’. There is ample evidence that in these systems the electrons 
are dynamically confined in a plane. The attractiveness of these structures stems from 
the possibility of varying the electronic density over a very large range. 

From the many body point of view it is to be noted that short range correlations 
are much more important in the 2D than in the 3D case. This effect is usually 
expressed in the pair distribution function g of the system, which has therefore been 
studied by a variety of methods2-I3 : Self consistent (so-called ‘STLS’) calculations24 
have led to very accurate results for the correlation energy as compared to Monte 
Carlo corn put at ion^^.^. They suffer, however, from the well known deficiency of 
yielding negative values at small distances. The validity of ladder-surnmation~~*~, 
which remove this weakness, is restricted to very small particle separations. More 
refined theories such as coupled-cluster9 or approximative Fermi-hypernetted-chain 
calculations” require a very high computational effort. Thus a simpler and less time 
consuming calculation method would be desirable. 

(DM) as 
evaluated by A. Schinner16 has proved to produce realistic results over a wide range 

In the 3D system the heuristic approach of Dawson and 

* Formerly H. M. Miesenbock 
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252 A. SCHINNER AND H. M. BOHM 

of densities. It is based on a generalization of the free pair distribution function 
formula to a density functional of an effective single particle potential. The latter is 
determined self consistently by Poisson’s equation. The aim of the present work is 
to adapt this procedure for the 2D system and to investigate the validity of the model 
in this case. 

In Section 2 the ansatz of the pair distribution function is presented and a linear 
functional of the effective potential w is obtained for g. Section 3 gives the derivation 
of w as a functional of g. Finally, numerical solutions and results are discussed in 
Section 3. 

2 DERIVATION OF THE FUNCTIONAL g ( x l w )  

Following the basic concept developed by Dawson and March14 we start from a 
closer inspection of the free pair distribution function in the two-dimensional jellium 
system 

( J , ( x )  is denoting the first order Bessel function of the first kind). Here and in the 
following we are using dimensionless units that are measuring distances in k j  ’, 
momenta in k,, and energies in Rydbergs, where k, is the Fermi momentum. Taking 
advantage of the analysis by March and Murray”, we can easily write down the 
exmession 

X 

for the mth radial density component of the pair-interaction-free two-dimensional 
electron gas under the influence of an external one-particle potential V(x),  and 
with arbitrary Fermi momentum k,.  The uk,,,(x) are then the-not necessarily 
normalized-real solutions of the radial Schrodinger equation 

to the given k ( x ) .  1 he g,(k) are defined as 

and take care of the correct norm of the wave function in Eq. (2). rs in Eq. (3) is the 
usual density parameter that is connected to the average density n in Eq. (2) by the 
relation n - l  = ~ ( i ~ a , ) ~ ,  where a, stands for the Bohr radius; c1 is an abbreviation for 

For vanishing external potentials V ( x )  the fundamental solutions of Eq. (3) can be 
V f i .  
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found easily 

1/2 

Ukqm(X) = (; k x )  * N,(kx). 

J ,  and N m  denote the mth order Bessel and Neumann  function^'^, respectively. 
Hence, we realize that Eq. ( 1 )  can be rewritten in terms of Eqs. (2 )  and (5) as 

gO(x) = 1 - x - 2  - - q ( x )  . [:a:f L1 
The basic idea within the Dawson-March approximation now is to generalize the 
exact result Eq. (6) to the case of the interacting Fermi fluid, where the effects of the 
pair interaction will be simulated by a single particle potential V(x)  in nl(x). Thus we 
interpret Eq. (6) as a functional of V 

where c1 and ul,l  must be calculated from Schrodinger’s equation (3) using the 
potential - V ( x ) / 2  (the - 1 / 2  is due to the fact that a repulsive potential should 
decrease g(O), and that two electrons of equal masses are scattering). V ( x )  then has 
the meaning of a local field corrected Coulomb potential that is globally taking into 
account the interaction effects of g(x) via a correction of the exchange contributions 
in Eq. ( 1 ) .  This potential is determined in a self consistent way together with the pair 
correlation function in the next chapter. Here we end with a further simplification 
of the functional Eq. (7) by evaluating the wave function u l , l ( x )  within first order 
perturbation theory for V(x).  This leads us to the final result 

I w )  = S ( X  I V )  - S0(X) 

where we have introduced w(x) = x . V(x).  

3 EFFECTIVE POTENTIAL w(x I g) 

The deviation of g(x )  from go(x) gives essentially the probability of finding a particle 
at a distance x from a given particle in the origin due to exchange and correlation 
effects. Correspondingly Ag can be interpreted as being roughly equivalent to an 
induced particle density of 

pind(x, 4 = nAg( I x I )W, (9) 
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where n denotes the area density of the charge layer. Although in a real quanta1 
system the charge distribution always has a finite width in the z-direction, the model 
of a strictly 2D electron gas is assumed in Eq. (9), since correlation effects are most 
pronounced in the latter case2. The applicability of the DM model beyond the 3D 
system is thus most severely tested. The use of (9) in Poisson's equation immediately 
results in the following induced potential (in Rydbergs) 

( K  denotes the elliptic integral of the 1st kind). 

Ag and Vshows that in order to fulfill Kimball's relation18 
To this the potential of the particle in the origin must be added. Limit analysis of 

g'(0) = 2ar,g(O), (1 1) 

u = 3g(O). (12) 

the bare Coulomb potential has to be corrected by a factor a with 

It is interesting to note the similarity with local field corrected potentials", which, 
too, have an effective short-range Coulomb interaction modified by the value of g(0) 
due to Niklasson's r e l a t i ~ n ' ~ . ~ ~  for the local field c o r r e ~ t i o n ' ~ - ~  G(q) - [l - g(O)] for 
large momenta q. 

The expression for the one-body potential w = XV appearing in Eq. (8) for g(x lw)  
then finally reads 

4 RESULTS AND DISCUSSION 

In the 3D case Poisson's equation leads to a comparatively simple homogeneous 
integro-differential equation for w its presented in Ref. 16. For the 2D problem, 
however, the self consistent solution strategy had to be modified by iterating Eqs. (8) 
and (13). In order to improve convergence properties, a linear combination of the 
two previous steps was used as input for the next iteration. While the effective 
one-body potential shows some sensitivity to the numerical parameters used, the 
quantity of main interest, the pair distribution function, is hardly influenced by such 
variations. 

The solutions obtained for wfx) are shown in Figure 1 for three different values of 
r,. As in the 3D case the structure is more pronounced with increased coupling 
strength. Figure 2 gives a comparison of the corresponding pair correlation functions. 

Finally, the values for g(0) as calculated from the DM model are compared with 
other theories. Short range correlations being mainly determined by two-particle 
scattering processes, reliable results for g(0) have been obtained by summation of 
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Figure 1 
(dashed line) and c) r, = 512 (dash-dotted line). 

Results for w(x) from the self consistent solution of Eqs. (8, 13). a) r, = 0.1 (solid line), b) r, = 1 

pair distribution function g(x) 
1 

x*kf 0.00 I I I I I I 

0 1 2 3 4 5 
Figure 2 Self consistent results for the pair correlation function g(x) for various densities: r, = 0.1 (solid 
line), r, = 1 (dashed line) and r, = 5 (dash-dotted line). The squares denote the Monte-Carlo results of Ref. 6. 
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--.. --. .- *. - .. '. '. 
----------.- -.--_ _____._____ 

l ~ l ' i ~ l ' l ' ~ '  

Figure 3 Zero distance pair correlation g(.r = 0) versus r, from the present theory (solid line) and the 
ladder summation, Eq. (14) (dashed line). The squares denote the Monte-Carlo results of Ref. 6.  

Goldstone ladder diagrams7**. Figure 3 shows the comparison of DM with their 
approximate analytical evaluation7, i.e. 

g(0) = 0.5[10(2J&)]-2.  (14) 

Table 1 shows g(0) for different values of r, obtained in the various approaches: 
Dawson-March (present), first order perturbation theory (Ref. 1 1), STLS (Ref. 2), 
analytical7 and numerical* ladder summation, coupled-cluster (Ref. 9), and finally 
Monte-Carlo (Ref. 6 )  calculations. Strictly speaking, the validity of DM is restricted 
to the small coupling region due to the linearization of g(x1w). This explains the less 
satisfactory behaviour for large Y,. (In addition, the numerical effort required to obtain 

Table 1 Pair distribution function at zero distance. 

rs D M 1.0. STLS Lad(A)  Lad ( N )  CCM M C  

0.5 0.29 0.15 0.32 0.26 0.3 1 0.30 - 
1 .o 0.2 1 - 0.2 1 - 0.15 0.21 0.2 1 0.17 
2.0 0.15 - 0.92 - 0.06 0.13 0.12 - 
4.0 0.10 - 2.30 0.03 0.01 - 0.05 - 
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stable results is increased significantly for r, 2 7). In the r, 4 1 limit 

g(0) = 0.5 - yr,  + 6(rf) (15) 

with 

?Ord = 0.71 yDM = 0.82 

the conformity is also good. While in the perturbational treatment”, which is also 
a weak coupling approach, g(0) turns negative at r ,  x 0.7, the DM values appear 
to remain positive over the whole density range investigated. In addition, they are 
surprisingly good up to r, x 2. 

In summary, the DM approximation has been shown to yield satisfactory results 
for the 2D pair correlation function over an appreciable density range. The theory 
gives positive g(0) values for all parameters investigated, but, as expected, tends 
to break down for strong coupling. The overall behaviour of the results is similar to 
the corresponding 3D case16. 
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